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Abstract fied theory", was applied to the radia-
tion problem by Newman and Sclavounos

A linear slender-body theory is pre- (1980) and was extended to the diffrac-
sented for the zero-speed motions of a tion problem by Sclavounos (1981).

O ship in regular free-surface waves,
valid for an arbitrary angle of inci- In the present paper the radiation
dence and all wavelengths of practical and diffraction problems are combined
interest. The velocity potential of to predict the zero-speed heave and
the "radiation" problem is obtained by pitch motions of a ship in waves. The
the superposition of a particular solu- theoretical derivation is presented in
tion, identical to that of the short- Section 2 including the radiation prob-

O wavelength strip theory, and a homo- lem as derived by Newman (1978) for
C.> geneous component that accounts for the purposes of comparison with the 6iffrac-

longitudinal flow interactions. A tion problem. The short-wavelength
similar representation is used for the approximations of the unified theory
"diffraction" problem where the particu- are derived in Section 3 where existing
lar solution is equal and opposite to theories for the radiation and diffrac-
the incident wave velocity potential. tion problems are recovered. An effi-

cient numerical technique for the solu-
Computations are presented for the tion of two-dimensional free-surface

vertical hydrodynamic force distribution problems is described in Section 4. A
and the heave and pitch added-mass and hybrid integral representatio: valid in
damping coefficients, exciting forces a domain bounded by the body section,
and motions for a Series 60 hall. Com- the free surface and a circular boundary
parisons are made with strip theory, a lying in the fluid domain is matched to
three-dimensional theory and experi- a multipole representation valid outside
ments. the matching circle. In Section 5 numer-

ical computations are presented for the
hydrodynamic force distribution and the

1. Introduction motions for a Series 60 (C m .7) hull
and comparisons are made wlth existina

In the past twenty years slender- theories and experimental data.
body theory techniues have found broad
applications in ship hydrodynamics. In what follows,;% physical descrip-
The geometrical slenderness of the ship tion of the method of solution is
hull, however, is insufficient to jus- attempted. The ship is assumed to be
tify an asymptotic theory. The length- slender, the fluid motion incompressible
scales introduced by the wavelength and/ and irrotational and the ship motion
or the ship forward speed need also to amplitude small enough to validate the
be considered, linear decomposition of the hydrodynamic

disturbance in the radiation and the
Tne wavelengths encountered in an diffraction problems.

ambient seaway are comparable to both
the transverse and the longitudinal For the radiation problem, in an
dimensions of conventional ships. It "inner" region close to the ship hull,
is therefore desirable that a theory the longitudinal flow gradients are
for the motions of a ship advancing in small compared to the transverse ones.
waves would embrace all wavelenqths The field eouation can therefore be
encountered in practice. Newman (1978) reduced to the two-dimensional Laplace
developed the theoretical framework of equation,supplemented by a two-dimen-
such a slender-body theory where the sional body boundary condition and the
ship slenderness is sufficient for the zero-speed free-surface condition. For
asymptotic analysis involved. The the diffraction problem the slenderness
theoty, hereafter referred to as "uni- assumptions are invoked after the
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longitudinal component of the incident 2. The Boundary Value Problem

wave is factored out. The two-dimen-
sional modified Helmholtz equation turns We introduce a Cartesian coordinate
out to be the relevant inner-field equa- system fixed in space with the free
tion with a no flux body-boundary condi- surface taken at z=O, the ship center-
tion and the same free-surface condition plane at y=O and the positive axis point-
as in the radiation problem. ing towards the bow. The ship is

assumed to perform small oscillatory
In an "outer" region, located at motions around its undisturbed floating

radial distances greater or equal to the position, all oscillatory quantities are
ship length, the flow gradients in all ex essed in complex form and the factor
directions are of comparable magnitude. e is understood hereafter. Only
The three-dimensional Laplace equation the symmetric heave and pitch motions
is satisfied in the fluid domain for are considered, since, to the same
both problems, subject to the zero- degree of accuracy, the longitudinal
speed free-surface condition and a con- interactions are absent from the anti-
dition of outgoing waves at infinity. symmetric modes for which strip theory
The method of matched asymptotic expan- is valid for all wavelengths. More
sions is used to enforce the compatibi- details for the analysis that follows
lity of the inner and outer solutions can be found in Newman (1978) and
in an intermediate "overlap" region. Sclavounos (198'.).

The velocity potential of the inner For water of infinite depth the
radiation problem involves a particular incident wave potential is given by
solution identical to that of the short-
wavelength strip theory and is supple-
mented by a homogeneous solution that igA expvz-iv(xcos6+ysir40)J, (2.1)
represents standing waves at "infinity". tI 4 W
The corresponding particular solution
of the diffraction problem is equal and where A is the wave amplitude, v=wl/g is
opposite to the incident wave potential the wavenumber and 8 the angle of inci-
with the longitudinal wave component dence, with 8-1800 for head incidence.
factored out. The homogeneous part
again satisfies standing waves at Let 0, J-3,5,7 he the complex"infinity" and is regular for all head- veloctl.,otenteals associated with the
ings. unit ampli-ude heave and pitch motions

and the synuetric diffraction problem
The homogeneous solutions of both respectively. Under the assumptions

the radiation and the diffraction stated in the Introduction, the three-
problems are multiplied by "interaction" dimensional Laplace equation is satis-
coefficients, functions of the longitu- fied in the fluid domain
dinal coordinate, that are determined
after the matching with the correspond-
ing outer solutions. Two integral V2 J = 0, (2.2)
equations are solved, in that context,
for the unknown three-dimensional source subject to the linear free-surface condi-
distributions along the ship axis that tion
describe the outer solutions of both
problems.

In the short-wavelength limit, the tjzVtj 2 0 on z = 0 , (2.3)

interaction coefficient of the radiation
problem vanishes and the classical strip-
theory solution is recovered(see and the body boundary condition applied
Ogilvie and Tuck(1969)).At the same limit, at the mean position of the ship wetted
the solutions of Choo (1975) and Troesh surface
(1976) for the diffraction problem are
recovered for oblique waves. The sin-
gularity that is present in these
theories for head waves is due to a non- V ii nj
uniformity that is present when the (n)?J4 =VZ-Xco&P
Zhort-wavelength approximation preceeds
the transition from oblique to head
incidence. For head waves the Maruo

V and Sasaki (1974) theory is recovered, 1
apart from a minor analytical differ- ,j=3,
ence. *)( 2.4 )ence COS (vysinv) ), =7



where n= (n1,n2 ,n2 ) is the unit normal For small yr, v r and kr, G can be
vector pointingou of the fluid domain approximated in the form
and ns = -xn +zn . The well-posedness
of the previgus oundary-value problems
requires that the velocity potentials G (y,zk-v e (y,z-
. represent outgoing waves in the far

'eld with the fluid velocity vanishing
as z -. 1 (l+vz)F* (k-vo) (2.8)

In the next two subsections the
ship slenderness is invoked to approxi- with an error factor l+0(v'r 2 V o2rk 2r2 )
mate the flow equations in the outer and and 0
inner regions respectively.

2A. Outer Reqion F (k) = fn(Iv 0 /Ikl)+(l-vol/v)

At radial distances comparable to or -
greater than the ship length, the flow •cosh - (Iv/ V 0) - 1l-k/v 2 -

is insensitive to the ship hull geometry
details and the velocity potential can
be approximated by a line distribution [,i+cosh - l(v/Ikl
of three-dimensional sources along the • (2.9)
ship centerline, given by -I+ cos-1 (v/IkI

ivox

where the upper or lower term in brack-
ets is applicable according as v/Ikl<l

e iv ei °  qj(&) G(x-C,y,z)d , (2.5) and Iv o< v for all cases of interest.

L Expression (2.8) in a generalization
of the correeponding approximation

where v is the characteristic wavenum- derived by Newman (1978, eq. 4.12)
ber of ?he longitudinal distribution of for the radiation problem. As vo 0,
the hull normal velocity (vo- 0  for the the combination of the first two terms
heave and pitch motions and 0 --vcosB in (2.9) reduces to tn(2v/lkl).
for the diffraction problem); qj(x) is Furthermore, G (y,z:0) = R2 (y,z) is
the slowly varying part of the source the two-dimensional source Fotential
strength distribution and G(x-&,y,z) is that satisfies the Laplace equation,
the velo,'ity potential due to a unit subject to the linear free-surface
pulsating source located on the ship condition and a radiation condition
axis at x=F.. In order to match the of outgoing waves , I . c. Given
outer solution (2.5) to the correspond- that Im(R2Dz =e cos(vy) and the
ing expression of the inner problem we fact that e cos(vy) (l+vz) I+0(v rl)]
need to expand (2.5) for small vr, in the regime where (2.R) is valid, it
where r - (y2+z2)i. It is convenient follows that
to take the Fourier transform of both
sides of (2.5) to obtain, G

G (yzk) 2D

(' (y,z;k) qj 1k) G (y,zlk-vo),  (2.6)

where where

f (k) - n(2v/lkl) + -k / -

G (y,z;k) e eikx G(x,yz)dx

Tri+cosh " v/ k I(.1

- z(u?+k d. cr+Cos
- (v/kl)l

- ij" (u2+ k") -v
0

which is identical to equation (4.12)
(2.7) of Newman (1Q78).



For the diffraction problem,v dinate stretching suggests that
-vcosB, with G (y,z;-v0) DgD being
the corresponding two-dimeni ional
source potential that satisfies the a a a o(c - )
Helmholtz equation (V2 Dvo 2 )D2 D = 0 W 0 -Y z 0(2.16)

and the same free-surface and radiation
conditions as R2D. It is essential toID2D)=ce~o(y~B2  when operating on ip defined in (2.5).

point out that IM(D )=I v ysin8
Applying (2.16) in (2.2)-(2.4) and

is singular for IcosBI=l and, as opposed using the definition of .,we obta .n
to the radiation problem, it is not present. the two-dimensional modified Helmholtz
Thus, the inner expansion of the outer eauation
solution for the diffraction problem
is given by (2.6) and (2.8)-(2.9) and - o2 - = 0 ,(2.17)
is regular for all headings. jyy +  jzz o j

In summary, the inner expansion of subject to the free-surface condition

the outer solution transformed back in
the physical x-space takes the form

- R2D jz - vij = 0 on z=0 , (2.18)
Wj(x,y,z) =q.(x))

Re(D2D) and the body boundary condition

1 j.3 iw N. , j-3,51
-W(l+vZ) qt (q (2.12) a~* (ev ~e cos(vysinB)I, j=7f

where the linear operator s is obtained (2.19)

by t,king the inverse Fourier transform
of (2.6). It follows that where to leading order in c,n=(0,N2N3),

ri with N5= -xN3.
= qj(x) [y + { h(B)i The general solution of (2.17)-(2.19)

can be obtained in the form

+fdF e" (fsgn(x.&)tn(2vlx&I) =j tp + C.(x) , jR (2.20)

L

where q' is a particular and q', a• -. ~)g (U, - ! K[ vlx- ) q4 (1U1 , homogen 6us solution of (2.l7)1 .19)
(ti 0 respectively. The "interaction"

coefficient CC(x) is presently an
(2.13) arbitrary funation of x that will be

determined from the matchino with the
where y=0. 5 7 ... is the Euler constant, outer solution. No radiation condition

needs to be satisfied in the inner
region since the outer solution already

s (2.o14) represents outgoing waves at infinity.

Following Newman (1978), a particular
K(x)=Yo (X)+2i Jo((X)+ {o(IXI) (2.15) solution of the radiation problem

(j=3,5, v -0) is the short-wavelenqth
with the upper or lower terms in brack- strip the8 ry potential *j that satisfies
wits ahuppn for toerdtsion (j=3,5 outgoing waves as vjyl w. The homo-
ets applying for the radiation 0=7,n geneous solution can be physically
and vo=0) and the diffraction (j=7 andreaddsthinrcioofwo ci

Vo =-vcsB) robems espctivly.regarded as the interaction of two inci-
Vo = -vcos$) problems respectively, dent symmetric waves with the ship

section. The pure imaginary form of
the body boundary condition suqgests

2B. Inner Region that *j + ii is a homoceneous solution,

where the overbar stands for the com-At transverse distances of the order plex conjugate of the quantity involved.

of the ship beam, the relative order of 
Thus,

the flow gradients in the longitudinal

and transverse directions are dictated
by the respective order of the geometry C= W+C((x)(,+ T), j=3,5 (2.21)
gradients. Assuming that both the y
and z coordinates are of 0(r), a coor-



with 4* -x#3 . In the overlap region, at the ship section, and is obtained in
transvrse distances large compared to the form
the ship beam but still small compared
to its length as 0, c4 can be ex- e ia
pressed by their effective source *7 e"z cosvysin)+DY'Z)' (2.29)
strengths, in the form

where *D is constructed by using the
Sj = oj R2v(Y,Z), (2.22) two-dimensional source potential Re(D2D)

that represents standing waves as
where R is the two-dimensional source viyl-a and is regular for all headings.
potentiR. that satisfies outgoing waves Thus,
as vlyJl-. We may thus approximate Pj
in the overlap region as follows, -

e ( x= - ilev cos (vysin8) [l-C? Wx)

tj {ac+C (x)(oj+))}R2D + C7 (x) % (y,z). (2.30)

2i C (NO)i Im(R 2D) (2.23) In the overlap region, '7 can be

If we now set, Im(R 2B )= (l+uz){l+0(V 2r2)}, approximated in the form

the outer expansion ff the inner solu-
tion becomes .'7 " [1-C (x)] (l+vz)

j = (j+Cj I(x) (aj+4j) }R2D + C(x)a.lX) Re(D 2 D)• (2.31)

- i C (x) (l+vz). (2.24) The matching requirements again
follow easily from (2.12) ant (2.31),

Comparing (2.12) to (2.24) the match- C a q (2.32)
ing conditions for the radiation prob- 7 7 7
lem are,

a. + C(x) (o +. qj (2.25) i(-C J(q (2.33)

i C 'a a " I(qj). (2.26) The elimination of C7 from (2.32)-(2.33)
results in the following integralequation for q7,

After eliminating Ci from (2.25)-(2.26),
the outer source sttength q is deter- qx - Z(qT) , (2.34)
mined from the integral eqtAtion 27 (X) --1g 7 1 07

qj(x) - (a /- +l)(qj) whered(q7) is determined by (2.13)
i i J with vo=-Vcos$.

(The solution of equations (2.27) and
aj(x) j=3,5, (2.27) (2.34) determines the outer source

strength q , and the complete innerI solutions ollow in the form
where 4#(qj) is given by (2.13) with v=0.

A particular solution for the dif-
fraction problem follows easily from the 5j = "j +  +) J3,5 (2.35)
body boundary condition (2.19) and is ci j
equal and opposite to the symmetric
part of the incident wave potential for the radiation problem, and

''7P - e' Z cos(vysinB). (2.28) '7 = evz cos(vysinB)(q 7/d7 -l)

The head sea limit of ip is the leading
order solution in the shCrt-wavelength + *Dq7/07  (2.36)
theory of Faltinsen (1971).

The homogeneous solution again re- for the diffraction problem.
sults from the interaction of two waves
of unit amplitude and equal phase in-
cident from opposite directions upon



*r

3. Short-Wavelength Approximations where l+vz = vz cos(vysin6)l+0(vr 2 )]
For wavelengths comparable to thy in the overlap region. The two-dimen-

ship transverse dimensions [vL=0 as sional source potential D2D satifies
sh0 it is pos ible to approximate the outgoing waves as vfy.o is singular
ineai s possibl to im the for head waves and corresponds to the

linear operator&&!c) defined in (2.13) Green function used in the short-wave-
using the techniqu's of asymptotic lenthnsti theorhriewbvCo
analysis. For the diffraction problem length strip theory derived by Choo
and -licosB<O,it follows that

(1i) L(2 -iv(-x)(lcosS)A In the head-sea case (8=180*), (3.1)
7) (-i) (v q) d& reduces to (originally due to "..itinsen

7M-Xif(1971)) 11
x 1 ) (17} ./2

-iri(cscO- i.jsec -TOI)q 7()0v) (3.1) ( 7) = U(li) (."V) dE, (3.9)
x ?( )

The details of the derivation can be 
x

found in Sciavounos (1981). The corre-
sponding approximation for the radiation and the Maruo and Sasaki (1974) theory
problem follows from (2.13) and (3.1) is obtained apart from two analytical
with cosB=O, in the form differences; the factor is missing

L/2 in their theory and an additional
2(l)v) J e-Iv(4-x) dC i q7(x)/2 term appears in their eaua-q. (-j-q- d tion which corresponds to (3.8) that

x R~x) should not be present in a consistent
+ 0(v-). .short-wavelength approximation.

Proceeding with the radiation problem, 4. The Two-Dimensional Problem
the integral in (3.2) can be further
approximated for large v in the form In this section a numerical scheme

for the solution of two-dimensional
& i(-x) 7 h free-surface wave problems in water of

L M p &- (7 -- exi/4 (3.3) infinite depth is described.
° qJ~ (C-x "

x The application of spectral tech-
can- niques to the solution of free-surfaceThe substitution of (3.3) in (3.2) bonaycauapolmsinn-eea

cels out the first two terms with the boundary-value problems is in generalremaining part being of 0(-4). Thus restricted to simple body profiles.
fraiig art bvengs oUrseil (1949) obtained the solution
for short wavelengths of the heaving problem of a circular

S section in water of infinite depth by
q.(x) = (x) + 0(v), (3.4) using a sequence of singularities

located at the origin of the axes.
The extention, however, of this method
to more general body sections has not

An approximation similar to (3.3) been yet formally established.
applied to (3.1) giveu An efficient numerical technique

to treat arbitrary body and bottom
Z(q7) - i csca q7 (x) + 0(v_). (3.5) geometries has been developed by Yeung

[Bai and Yeung (1974)). In an inner
eapproximation (3.5) is singular region of changing topography, a hybrid

The w a to a nonunl r integral equation is obtained by applv-
for head waves due to a nonuniformityfund-
that is present in the asymptotic
approximation of (3.1) when l+cosS=0, mental logarithmic singularity as thepSubstitiong (3.5) in (2.34) we obtain relevant Green function. This repre-

sentation is then matched to an eigen-
an algebraic equation for q7 (x) with a function expansion in an outer region
solution of constant depth. Liapis and Faltinsen

(1980) extended this method to the case
q7 = 07/(1 + 07csca). (3.6) where the Helmholtz eauation is satis-

fied in the fluid domain. A compre-

hensive survey of existing techniques
Substituting (2.33) and (2.32) in for the solution of two-dimensional(2.30) and using (3.5), we may write free-surface wave problems is given by

the outer expansion of the inner solu- Wehausen (1974).

tion in the form

= 2 i Csc q (x)(l+ vz)+q(x)Re(D2 D) ."

1L. 2 7 2D

q (x Dl II (3.7
7 2D1 -4

tn t



Wm (r,e) K K2m-2 (tr) cos (2m-2) e

S F + K 2m (r)cos2me

C BC
+ 2IsecBK 2m-1 (tr)cos(2m-l)6

0 T P Q '(4.5)

P where K Wx is the modified Bessel
A / functioR of order n defined in Abramoitz

B\ and Stegun (1964). For t=0. W R2
\ /S R with R 2D defined in Section 2.

2nd

- I,(rOe) = cos2mB + v cos(2m-l)0 .6

Dr r 2 2m1r 2-

Applying Green's theorem in region
II (ABCDA), using the symmetry of the
flow and the free surface condition

Figure 1. (4.2), we obtain

The present approach is a coupling f dsP$ 1  P i PQ
of a multipole expansion and a hybrid SBUS R
integral representation, valid respec-
tively in the domains l and 11 of Figure
1, separated by a matching circle SR-+ d()"()~~* )vPPQ
The water depth is assumed infinite and +J sPOIpJP-V )v (,Q
the body section symmetric with respect ~
to the y-O axis. The Helmoltz equation SF
is in general satisfied in the fluid
domain

-2 tl 0, (4.1) - ds(P)F(P,Q) (nP- *V "P

subject to the free-surface conditionR

O- V w 0 on ZW0, (4.2) 1 ds(P) F(P.Q) V(P), (4.7)

to a general body-boundary condition B

where nis the unit normal vector
6~ V() n S (43) pointing out of domain 11 and

and to a condition of standing or out- F(I)-GPQ+ )+GPQ 48
going waves as v~yJ4Q-. For all cases of FpQ (, (,) 48
interest 0~ < C with Q + Q lying on SDLISFUSR and Q

Assuming a symmetric flow with re- being the symetric of Q with respect
spect to the y-O axis, we may write to the Y=O axis; G(P,Q) is the velocity
the velocity potential in region I in potential at P due to a fundamental
the form (Ursell (1949, 1968)1 u nit source located at Q, given by

0 ao W (r,O) + I a MW m(r,O), (4.4) Il oQr' , ti-

where a0 is the effective source G(.Q V, j t [ >(.
strength, W0 is the relevant wave 27lTKO0 PQ) t0
source potential due to a unit source
located at the origin, and W (r,e) are
wave-free multipoles. For ?- vIcos6l>0, wherei KxW is the modified Bessel

0 aned 2D with 02D defined in Section functioR of zeroth order.
2, n



A grid is selected along the contours where NT = N +NF+N , V. is the body
SB, S and S with the velocity potential boundary norial' veociiy, 6.. the
assLed constant along the segments Kronecker delta and

joining two consecutive grid points.
Let NB, N and NR be the number of seg-
mentsa g S, Sp and S respectively. [ij j=l,..,Nandj +l.., 4Taking the sepiment lengths to be of j I (4.17)
equal length along the matching circle D DiS j-B+I"  N
and keeping N -1 terms in the syries
(4.4), the velocity potential ' and
its r-derivative 41 at the segment with i=l,..,N The influence matrixes
midpoints can be written in a matrix S D. ij ,. .. ,N are defined as
form f lowi T

-4 = Aa (4.10)

S = I ds(P)F(PQi) (4.18)

r B a, (4.11)

where the column vectors , and the Dij pdsP) (npVp)F(P,i (4.19)
matrixes A and B are defined as follows Sj

{I (R ))T (4.12) where,F(P,Q) is defined in (4.8)-(4.9),
1 R the point 0i is located at the midpoint

of the i-th segment and the inteQrations
- T (4.13) in (4.18)-(4.19) are performed over the

a a aN R. j-t segment Sj.

and The matching conditions of continuous
pressure and normal velocity across the

A - Ai=W.(R,6),B M matching circle SR  can be expresveed in
ij WJ1(R.61)1  r=R the form

I (R%) II
i,j = I,...,NR, (4.14) 1 (R,)= Oi+N (4.20)

where (Rd.), i=l,..°,N are the polar
coordinatei of the segmint midpoints
along the discretized circle S , with or(R,i i(4.2
0 decreasing to zero as i inc(ases.

If we left-multiply both sides of where i-l,...,H and N=N +N,. Using
equation (4.10) by BA-, we obtain a wheRe}-(4.21) ad 4 n 'the Usin

relaionbetwen he vlocty ptenial(4.20)-(4.21) and (4.l15) in the secondrelation between the velocity potential sum of (4.16), we end up with a matrix
formand the normal velocity *r in the equation for 0I, ju1l,...,NT

r= B A"  (4.15) {C- I-E I  V, (4.22)

We next proceed to the discretization where,
of equation (4.7). hie velocity poten-
tial at the midpoint,?f the i-th seg- ;II M .II ) T (4.23)
ment is denoted by 0. , where the in- i T
dexing starts from te point A of Fig. T
1. It follows that V = Ii, 0,..,0 i~l,...,NB (4.24)
N (T 1 NT lT N+N

Iij' " S ij rj N F +N R
j=l J=NF+I Ii. =  i6

N B j 1 i ,+ 1 1, . .. N T ( 4 . 2 5 )

I Sij Vj , (4.16) S = Sij

j=l



k ,where n. is the complex amplitude of

SNT NR the shi 's displacement and
Eij= S iBk_~ A- 1  2LN+I ik m m m,j-N, t = 2 ai - iw bij - ci. (5.2)

j=1,...,N The coefficients a.., b.., c.. are real! (4.26) and correspcnd resbcti~ly ig the force
components in phase with the accelera-

j=N+I,...,N T tion, velocity and static displacement
of the ship. The added-mass (aij) and

with i=l,...,N and A=Aij , B=B damping (b..) coefficients can be
T i"' derived fr6 the inner velocity potential

i,j=l,...,N T defined in (4.14). (2.21) of the radiation problem by inte-
grating the linearized pressure obtained

The velocity potential 0 along the from Bernoulli's eauation over the ship
contours SB, SF and SR is determined wetted surface. It follows that

from the solution of the system of 2
equations (4.22). The effective source w a ij - iwb1 -iwp ffniojds
strength a in (4.4) is obtained by
left-multiplying (4.10) by A- .

The present scheme is free from
irregular frequencies. Furthermore,
only one evaluation of the wave-source where all the cuantities are defined in
potential Wo is necessary. This reduces Section 2B.
substantially the total computation time
required, in comparison to the alterna- The first integral in (5.3) corre-
tive approach of a wave-source distri- sponds to the strip-theory contribution.
bution on the body boundary, especially The second intearal is the correction
when 1>0. due to the three-dimensional interaction

effects introduced by the unified theory.
The described technique has been As v-, it follows from (2.25) and (3.4)

applied for t=vjcosSj>O in the context that CW(x)40 and the strip-theory is
of the diffraction problem. Selecting, recovered.
the matching circle radius R 10% greater
than the body-section maximum radius and Proceeding to the diffraction prob-
15, 10 and 15 segments on SB, SF and SR lem, the resulting complex amplitude

respectively,proved to be sufficient of the wave exciting force is simply

* for 0 < f L i, where B is the beam of F. = A Xi, i=3,5, (5.4)
the body section. The same estimates
are expected to hold in the special
case of f=0. For this paper, the two- where A is the amplitude of the incident
dimensional solutions of the radiation wave. Using the incident-wave potential
problem are ootained by using a com- (2.1) with A=l and the diffraction
puter program due to Yeung (1975), potential 9 , the unit-amplitude ex-pure prgramdueto eung(195),citing forc4 Xi can be expressed in the
based on his hybrid integral equation form i
technique. form

Xi = -iwp( + ?7 ) nids. (5.5)

5. Hydrodynamic Forces and Motions

The quantities of interest for the An alternative expression can be
evaluation of the ship motions are the obtained by using the Haskind relations.
hydrodynamic pressure force and moment Combining the body-boundary condition
acting on the ship in the radiation and (2.4)for the radiation problem and
the diffraction problems. For a ship applying Green's theorem in (5.5), we
undergoing a steady-state small ampli- obtain
tude oscillatory heave and pitch motion
in an otherwise calm free surface, the
resulting complex force amplitude can be X= -p(i-ni I - n )ds, (5.6)
written in the form

where . is the radiation potential due
Hi = Y ,. t,, i=3,5, (5.1) to the f-th mode of oscillation. Withj=3,5 t the velocity potentials 9 7 and ?i assumed

known, no assumptions are involved



regarding the wavelength or the body where M33=py is the ship mass, "55 is
geometry in (5.5) and (5.6). Thp
advantage however in using (5.6! is the ship moment of inertia with respect
that the solution of the diffraction to the y-axis and M3 5=M5 3=0 due to the
problem is not needed for the evaluation special choice of the coordinate system.
of the exciting force and moment of a Substitutina (5.2) in (5.9) and rear-
body in waves, ranging terms we get

For a slender ship, the inner _ +a )+iwb
diffraction velocity potential defined ) ij ij) 2ij+Cij
in (2.5) and (2.36) is used together
with (2.1) to give

=AX., i=3,5. (5.10)

Xi = iW JJe_ivxcos C7 (x) 
U nids (5.7)

This is a system of linear equations
that can be easily solved for the

where C and p are defined in Section complex amplitudes nj, j=3,5.
2B. ThZ corresponding expression for
(5.6) is obtained by substituting the Numerical computations of the hydro-
unified-theory radiation potential dynamic forces and motions were per-
(2.21) in (5.6). If follows that formed for a Series 60 hull (C =0.7,

parent form). The Salvesen, ef al.
_(( )I (1970) strip-theory results are also

T - sshown together with an exact three-
dimensional numerical solution by Inglis
(1980) and experimental data, whereII Iavailable.

4 C(x)( + ) - - ds. (5.8)

The results for the radiation prob-
As v-, the interaction coefficient lem are shown in Figures 2 and 3, and

C s ) and expression (5.8) reducen are compared to experimental data of
C thean expingores (5.8)educne Gerritsma (1966). The agreement be-tthe exciting force cbtained in the tween the unified theory and experi-
strip theory of Salvesen, Tuck and tenteuiidter n xei
stiteo of970). S eshotcan h ments is very good both for the hydro-Faltinsen (1970). The short-wavelength dynamic force distribution (Figure 2)

limit of (5.7), however, does not lead and the added-mass and damping

to the same result since the slender- coefficients (Figure 3 adapted from

body approximations involved in (5.7) Newman and Sclavounos (1980)), and

and (5.8) are different, indicates a notable improvement over

The relative error involved in the st -ip theory. The deviation of a5
inner diffraction problem 's a factor from the experiments that occurs a low

i+0(rdcos). The corresponding error frequencies is supported by the excel-
factor for the radiation problem isagreement between the unifiedfacr for the radiaegtion prob is ththeory and the exact three-dimensional1+0(E2) for all wavelengths. It is thus solution of Inglis (1980) for all

expected that, unlike the radiation
velocity potential and the exciting frequencies.
force (5.8), the accuracy of the diffrac- The slowly varying sectional hydro-
tion potential i7 and the corresponding dynamic force distribution for the
exciting force (5.7) decreases with dynai o le is ivn by
decreasing wavelength. This is support- diffraction problem is given by
ed by the comparison of the exciting F'(x)= -iwPAC7W1 7 n3dl. (5.11)
force and moment predicted by (5.7) and 3 7
(5.8) with an exact three-dimensional C
theory.

The corresponding expression for the
The equations of motion follow by Salvesen et al. (1970) strip theory is

equating the inertia forces to the sum obtained from (5.8) with Ci(x)=0, in
of the pressure forces and the ship the form
weight. Combining (5.1) and (5.4) and I i
taking the origin of the coordinates F3 (x) = Pg (iN- 3).
on the ship centerline and above the
center of gravity, the equations of the C
heave and pitch motions follow in the eVzcos(vysinO)dl (5.12)
form

+where all the quantities in (5.11) and
S .ti. + AX Mi ,"j, (5.9) (5.12) are defined in Section 2B. The

j=3,5 j=3,5 results for F' and the amplitudes of

the exciting fArce and moment shown in
Figures 4 and 5 respectively, indicate
that the strip-theory predictions are
in general higher than those of the
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unified theory. data. The strip theory predicts well
the motion amplitudes and phases but is

The two expressions of the exciting in less satisfactory agreement with the
force and moment (5.7) and (5.8), de- other theories and expeximents for the
rived respectively by pressure integra- hydrodynamic coefficients and the
tion and using the Haskind relations, exciting forces.
compare well with each other, being in
closer agreement for smaller values of The integral equations (2.27) and
vIcosel. For head waves, both agree (2.34) are solved by iteration and the
well with the experimental data of Vugts solution obtained in this manner has
(1971) and the three-dimensional solu- been checked against an independent
tion, with a relatively more favorable matrix inversion solution. The computa-
agreement of (5.8) with the theory of tion time required for this task is
Inglis (1980). minimal, leaving the solution of the

two-dimensional problems as the main
Finally, the motions of the ship free computational effort involved in the

to heave and pitch are presented in unified theory.
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